16M (1024K x 16) Static RAM

Features

Very high speed: 55 ns and 70 nsVoltage range: 1.65V to 1.95V

• Ultra-low active power

Typical active current: 1.5 mA @ f = 1 MHz
 Typical active current: 15 mA @ f = f_{MAX}

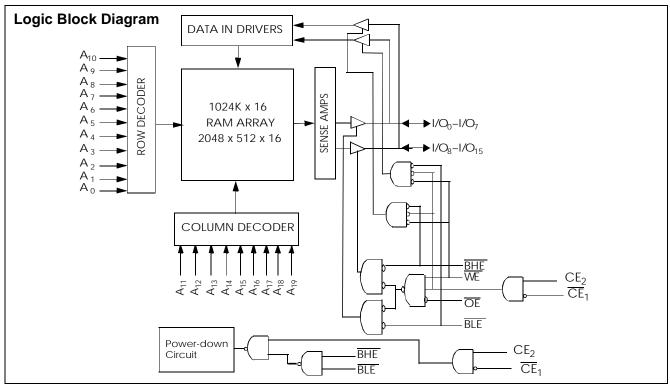
· Ultra-low standby power

Easy memory expansion with CE</>
 1-/>, CE2-/> and OE-/>
features

· Automatic power-down when deselected

· CMOS for optimum speed/power

Packages offered in a 48-ball FBGA


Functional Description^[1]

The CY62167DV18 is a high-performance CMOS static RAM organized as 1024K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not

toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable 1 (\overline{CE}_1) HIGH or Chip Enable 2 (CE_2) LOW or both BHE and BLE are HIGH. The input/output pins (I/O_0) through I/O_{15} are placed in a high-impedance state when: deselected Chip Enable 1 (\overline{CE}_1) HIGH or Chip Enable 2 (CE_2) LOW, outputs are disabled $(\overline{OE}$ HIGH), both Byte High Enable and Byte Low Enable are disabled $(\overline{BHE}, \overline{BLE})$ or during a write operation (\underline{Chip}) Enable 1 (\overline{CE}_1) LOW and Chip Enable 2 (\overline{CE}_2) HIGH and (\overline{CE}) LOW).

Writing to the device is accomplished by taking Chip Enable 1 ($\overline{\text{CE}}_1$) LOW and Chip Enable 2 (CE_2) HIGH and Write Enable (WE) input LOW. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then das pins (A₀ through A₁₉). If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the ad

Reading from the device is accomplished by taking Chip Enable 1 ($\overline{\text{CE}_1}$) LOW and Chip Enable 2 (CE_2) HIGH and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (<>O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2]

Note:

2. DNU pins are to be connected to V_{SS} or left open.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C

Supply Voltage to Ground Potential -0.2V to V_{CCMAX} + 0.2V

DC Voltage Applied to Outputs in High-Z State $^{[3]}$ -0.2V to $\rm V_{CC}$ + 0.2V

DC Input Voltage ^[3]	-0.2 V to V _{CC} + 0.2V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A)	V _{CC} ^[4]
Industrial	−40°C to +85°C	1.65V to 1.95V

Product Portfolio

							Power Di	ssipation		
						Operating	g, Icc (mA)			
	V _{CC} Range(V)) Speed		f = 1 MHz			Standby,	I _{SB2} (μΑ)
Product	Min.	Тур.	Max.	(ns)	Тур.	Max.	Тур.	Max.	Тур.	Max.
CY62167DV18L	1.65	1.8	1.95	55	1.5	5	15	30	2.5	30
				70			12	25	2.5	30
CY62167DV18LL	1.65	1.8	1.95	55	1.5	5	15	30	2.5	20
				70			12	25	2.5	20

DC Electrical Characteristics (over the operating range)

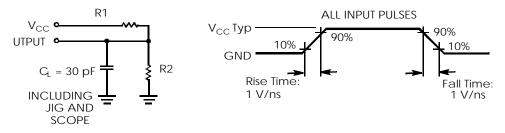
							18-55	CY	32167DV	18-70	
Parameter	Description	Test Cond	Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$I_{OH} = -0.1 \text{ mA}$ $V_{CC} = 1.65 \text{V}$		1.4			1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 1.6$	5V			0.2			0.2	V
V _{IH}	Input HIGH Voltage				1.4		V _{CC} + 0.2	1.4		V _{CC} + 0.2	V
V _{IL}	Input LOW Voltage				-0.2		0.4	-0.2		0.4	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$			-1		+1	-1		+1	μΑ
l _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Disabled	$GND \leq V_O \leq V_CC$, Output Disabled		-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	Vcc = 1.9			15	30		12	25	mA
	Current	f = 1 MHz	I _{OUT} = 0m CMOS lev	ıA, ⁄el		1.5	5		1.5	5	
I _{SB1}	Automatic CE	$\overline{CE}_{1} \ge V_{CC} - 0.2V$	$CE_2 \leq L$	_		2.5	30		2.5	30	μΑ
	Power-down Current - CMOS Inputs	0.2 V, $V_{IN} \ge V_{CC} - 0.2$ V, $V_{IN} \le 0.2$ V, $f = f_{MAX}$ (Add <u>ress and Data Only)</u> , $f = 0$ (OE, WE, BHE and BLE)			2.5	20		2.5	20		
I _{SB2}	Automatic CE	$CE_1 \ge V_{CC} - 0.2V$		_		2.5	30		2.5	30	μΑ
	Power-down Current – CMOS Inputs	$0.2V, V_{IN} \ge V_{CC} - V_{IN} \le 0.2V, f = 0, V_{CC} = 1.95V$	0.2V or L	L		2.5	20		2.5	20	

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	TA = 25°C, $f = 1$ MHz	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit


Notes:

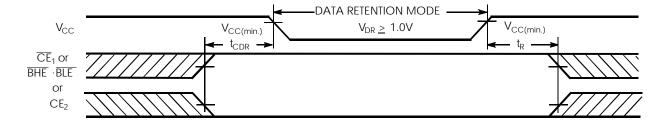
- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.
 Tested initially and after any design or proces changes that may affect these parameters.

Thermal Resistance

Parameter	Description	Test Conditions	BGA	Unit
θ_{JA}	l (c) '	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	55	C/W
θ_{JC}	Thermal Resistance (Junction to Case) ^[5]		16	C/W

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT


Parameters	1.8V	UNIT
R1	13500	Ω
R 2	10800	Ω
R _{TH}	6000	Ω
V _{TH}	0.80	V

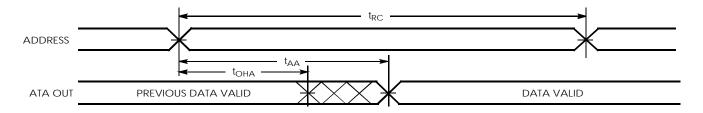
Data Retention Characteristics

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit	
V_{DR}	V _{CC} for Data Retention			1.0		1.95	V
I _{CCDR}	Data Retention Current	$V_{CC}=1.0V, \overline{CE}_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le$	L			15	μΑ
		\leq 0.2V, $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq$ 0.2V	LL			10	
t _{CDR} ^[5]	Chip Deselect to Data Retention Time			0			ns
t _R ^[6]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform^[7]

Notes:

- 6. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)}$ > 100 μs or stable at $V_{CC(min.)}$ > 100 μs .
- 7. 7. BHE BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.


Switching Characteristics (over the operating range)^[8]

		CY62167	7DV18-55	CY6216	7DV18-70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle			•	•		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[9]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[9, 11]		20		25	ns
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to Low Z ^[9]	10		10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[9, 11]		20		25	ns
t _{PU}	CE ₁ LOW or CE ₂ HIGH to Power-up	0		0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-down		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55		70	ns
t _{LZBE} ^[10]	BLE/BHE LOW to Low Z ^[9]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to High-Z ^[9, 11]		20		25	ns
Write Cycle ^[12]						
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW or CE ₂ HIGH to Write End	40		60		ns
t _{AW}	Address Set-up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		45		ns
t _{BW}	BLE/BHE LOW to Write End	45		60		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[9, 11]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[9]	10		10		ns

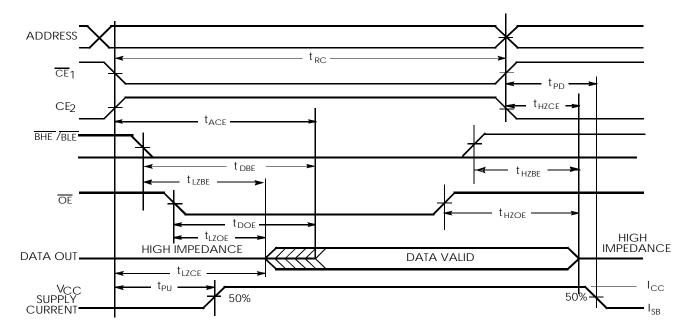
Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[13, 14]

Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of V_{CC(typ.)/2}, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZDE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any siven device.

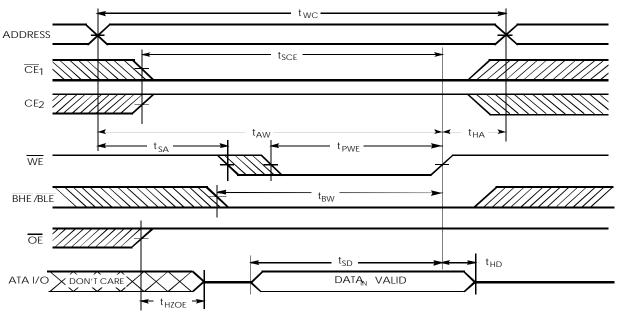
 10. If both byte enables are toggled together, this value is 10 ns.


 11. t_{HZOE}, t_{HZDE}, t_{HZDE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a <u>high</u>-impedance state.

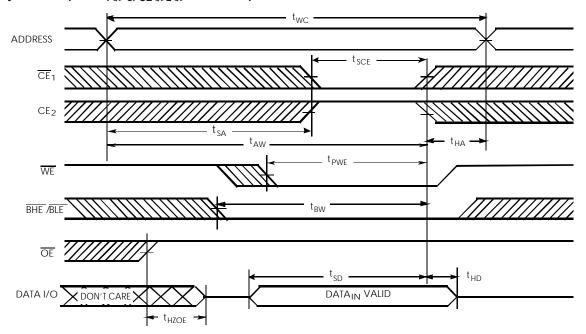
 12. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}.

 13. Device is continuously selected. OE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, CE_{2<Def>}

- 14. WE is HIGH for Read cycle.

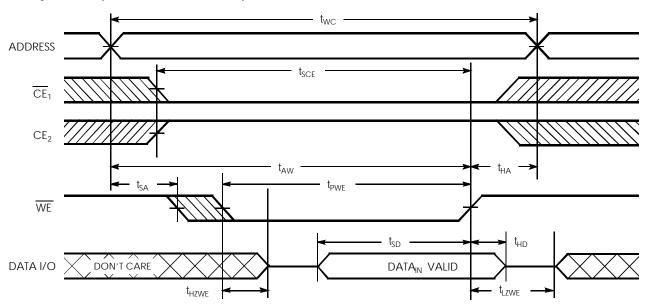

Read Cycle No. 2 (OE Controlled)[14, 15]

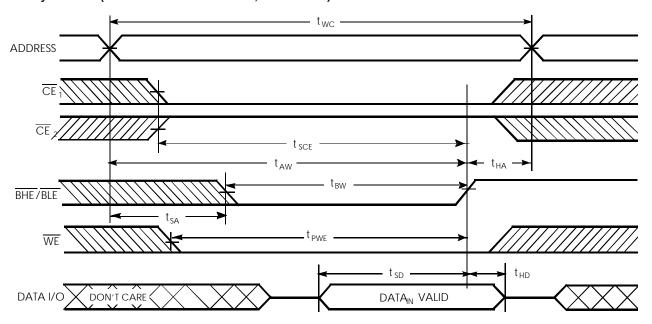
Switching Waveforms (continued)


Write Cycle No. 1 (WE Controlled)[12, 16, 17, 18]

Note:

15. Address valid prior to or coincident with \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.


Write Cycle No. 2 ($\overline{\text{CE}}$ - $\sqrt{\text{P}}$ - $\sqrt{\text{CE}}$ - $\sqrt{\text{P}}$ - $\sqrt{\text{P}}$



Switching Waveforms (continued)

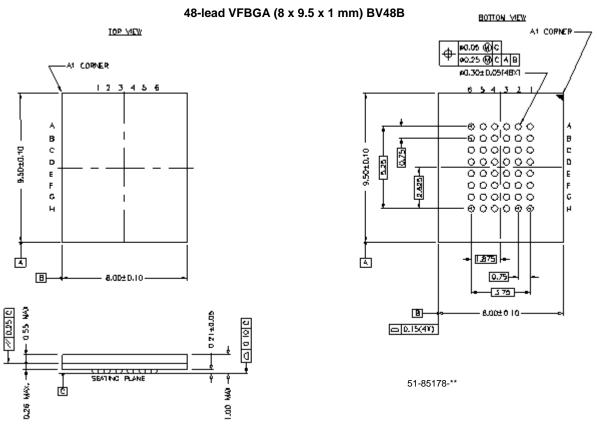
Write Cycle No. 3 (WE Controlled, OE LOW)[17, 18]

Write Cycle No. 4 (BHE</>/BLE</> Controlled, OE</> LOW)</>[17]

Notes:

- 16. Data I/O is high-impedance if OE = V_{IH}.
 17. If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.
 18. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.

Truth Table


CE ₁	CE ₂	WE	OE	BHE	BLE	Input / Outputs	Mode	Power
Н	Χ	Χ	Χ	Χ	Χ	High Z	Deselect/Power-down	Standby(I _{SB})
Х	L	Χ	Χ	Х	Χ	High Z	Deselect/Power-down	Standby(I _{SB})
Χ	Х	Χ	Χ	Н	Н	High Z	Deselect/Power-down	Standby(I _{SB})
L	Н	Н	L	L	L	Data Ou'(I/O0- I/O15)	Read	Active(I _{CC})
L	Н	Н	L	Н	L	Data Ou(I/O0- I/O7); High Z (I/O8- I/O15)	Read	Active(I _{CC})
L	Н	Н	L	L	Н	High Z (I/O0-I/O7); Data Ou(I/O8-I/O15)	Read	Active(I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active(I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active(I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active(I _{CC})
L	Н	L	Χ	L	L	Data In (I/O0- I/O15)	Write	Active(I _{CC})
L	Н	L	Х	Н	L	Data In (I/O0-I/O7); High Z (I/O8-I/O15)	Write	Active(I _{CC})
L	Н	L	Х	L	Н	High Z (I/O0-I/O7); Data In (I/O8-I/O15)	Write	Active(I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62167DV18L-55**I	TBD	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	Industrial
	CY62167DV18LL-55**I	TBD	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	
70	CY62167DV18L-70**I	TBD	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	Industrial
	CY62167DV18LL-70**I	TBD	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	

Package Diagram

MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY62167DV18MoBL2™ 16M (1024K x 16) Static RAM Document Number: 38-05326				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	118406	09/30/02	GUG	New Data Sheet
*A	123690	02/11/03	DPM	Changed Advance to Preliminary Added package diagram